Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2RS,4aRS,8aRS)-6-Oxoperhydro-naphthalene-2-acetic acid: catemeric hydrogen bonding in a bicyclic keto acid

Janish Desai, Roger A. Lalancette* and Hugh W. Thompson

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
Correspondence e-mail: rogerlal@andromeda.rutgers.edu
Received 31 August 2007; accepted 3 September 2007
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.037 ; w R$ factor $=0.102$; data-to-parameter ratio $=13.5$.

The title racemate, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$, aggregates in the solid as translational acid-to-ketone hydrogen-bonding catemers $\left[\mathrm{O} \cdots \mathrm{O}=2.6816(17) \AA\right.$ and $\left.\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=169^{\circ}\right]$. The stereochemistry obtained for the side chain arises spontaneously during the synthesis, prior to the hydrogenation that produces the cis ring juncture. Three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contacts were found.

Related literature

For related literature, see: House et al. (1965); Malak et al. (2007).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \\
& M_{r}=210.26 \\
& \text { Monoclinic, } C 2 / c \\
& a=21.1804(4) \AA \\
& b=10.1644(2) \AA
\end{aligned}
$$

$$
c=11.3208(3) \AA
$$

$$
\beta=113.841(2)^{\circ}
$$

$$
\mu=0.72 \mathrm{~mm}^{-1}
$$

$$
T=100(2) \mathrm{K}
$$

Data collection

Bruker SMART CCD APEX II
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\text {min }}=0.767, T_{\text {max }}=0.841$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.102$
$S=1.04$
1848 reflections
$0.39 \times 0.25 \times 0.25 \mathrm{~mm}$

11737 measured reflections 1848 independent reflections 1516 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.057$

137 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond and close-contact geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.85	$2.6816(17)$	169
$\mathrm{C} 1-\mathrm{H} 1 A \cdots 2^{\mathrm{ii}}$	0.99	2.53	$3.4997(18)$	167
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.51	$3.368(2)$	145
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.52	$3.4559(19)$	158
Symmetry codes: (i) $x, y-1, z ;(\mathrm{ii})-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;($ iii $)-x,-y+1,-z$.				

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x,-y+1,-z$.
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2004); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to Professor Jonathan L. Vennerstrom of the University of Nebraska Medical Center for a generous gift of methyl cyclohexanone-4-acetate. JD and HWT also thank the Rutgers University Undergraduate Research Fellows Program for support, and we thank Professor Gree Loober Spoog for helpful discussions. The authors acknowledge support by NSF-CRIF grant No. 0443538.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2498).

References

Bruker (2005). SAINT. Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Version 2.0-2. Bruker AXS Inc., Madison, Wisconsin, USA.
House, H. O., Trost, B. M., Magin, R. W., Carlson, R. G., Franck, R. W. \& Rasmusson, G. H. (1965). J. Org. Chem. 30, 2513-2519.
Malak, M. H., Desai, J., Lalancette, R. A. \& Thompson, H. W. (2007). Acta Cryst. E63, o3606.
Sheldrick, G. M. (2001). SADABS. Version 2. University of Göttingen, Germany.
Sheldrick, G. M. (2004). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o4009 [doi:10.1107/S1600536807043206]
($2 R S, 4 \mathrm{aRS}, 8 \mathrm{aRS}$)-6-Oxoperhydronaphthalene-2-acetic acid: catemeric hydrogen bonding in a bi-
cyclic keto acid
J. Desai, R. A. Lalancette and H. W. Thompson

Comment

Among the five H -bonding modes known for ketocarboxylic acids, dimers are found most often. However, we have shown that acid-to-ketone catemers occur more frequently when centrosymmetry is thwarted or disfavored, as well as among conformationally constrained molecules. The latter is the case for the title compound.

Fig. 1 shows the asymmetric unit with its numbering. In principle, the flexibility of the cis-decalin system permits either of two double-chair conformations. However, the disfavored arrangement would place the side-chain on an axial bond on the inside of the system's curvature, resulting in serious steric interference with an axial H at C 8 . The $\mathrm{C} 2-\mathrm{C} 9$ staggering requires that C 10 have a gauche interaction with an equatorial hydrogen either at C 1 or C 3 . Such gauche arrangements are less serious here than in systems where all centers are tetrahedral, because the carboxyl's $s p^{2}$ hybridization diminishes the steric repulsions involved. The observed $\mathrm{C} 2-\mathrm{C} 9$ conformation has torsion angle $\left.\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10=-174.51(13)^{\circ}\right)$. Within the asymmetric unit, any energy advantage for this arrangement appears so slight that the choice is likely dictated by packing considerations. The remaining available rotation yields a $\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 3$ torsion angle of $41.98(19)^{\circ}$ for the carboxyl group.

The averaging of $\mathrm{C}-\mathrm{O}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles by disorder often found in carboxyl dimers it is not seen in H -bonding modes whose geometries exclude the averaging mechanisms responsible. Because the title compound's aggregation is not dimeric, these bond lengths and angles are typical of those in highly ordered dimeric carboxyls.

Fig. 2 shows the packing of the cell, with extra molecules included to illustrate the acid-to-ketone H -bonding scheme. Each carboxylic acid is linked to the ketone in a molecule translationally related in the b direction [$\mathrm{O} \cdots \mathrm{O}=2.6816$ (17) \AA; $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=169^{\circ}$], with each of the cell's eight molecules participating in a separate H -bonding chain. These eight parallel chains appear as four counterdirectional pairs arrayed centrosymmetrically about 1/2,1/2,1/2.

We characterize the geometry of H bonding to carbonyls using a combination of the $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ angle and the $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}-\mathrm{C}$ torsional angle. These describe the approach of the H atom to the O in terms of its deviation from, respectively, $\mathrm{C}=\mathrm{O}$ axiality $\left(\right.$ ideal $=120^{\circ}$) and planarity with the carbonyl (ideal $=0^{\circ}$). Here, these angles are $125 \&-7.5^{\circ}$.

Three intermolecular close contacts were found within the $2.6 \AA$ range we standardly survey for non-bonded $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ packing interactions (Table 1).

Experimental

The title compound has not previously been reported. The corresponding $\Delta^{4 \mathrm{a}, 5}$ keto acid, prepared as described by Malak et al. (2007), was hydrogenated over Pd / C in absolute ethanol solution and yielded material mp 405 when recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ /hexane. The stereochemistry obtained for C 2 versus C 8 a arises prior to the hydrogenation, probably as a result

supplementary materials

of equilibrations during saponification or earlier (House et al., 1965), while the cis ring-juncture stereochemistry obtained in the reduction is typical of results in a variety of octalones.

The solid-state (KBr) infrared spectrum of (I) has $\mathrm{C}=\mathrm{O}$ absorptions at $1721 \& 1678 \mathrm{~cm}^{-1}$, with a peak separation typical of the shifts seen in catemers, due, respectively, to removal of H bonding from the acid $\mathrm{C}=\mathrm{O}$ and addition of H bonding to the ketone. In CHCl_{3} solution, where dimers predominate, these bands coalesce and appear at $1706 \mathrm{~cm}^{-1}$.

Refinement

All H atoms for (I) were found in electron-density difference maps. The $\mathrm{O}-\mathrm{H}$ was constrained to an idealized position with distance fixed at $0.84 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The methylene and methine Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with $\mathrm{C}-\mathrm{H}$ distances of 0.99 and $1.00 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figures

Fig. 1. The asymmetric unit with its numbering. Displacement ellipsoids are set at the 30% probability level.

Fig. 2. A partial packing diagram with extracellular molecules, illustrating four of the eight translational acid-to-ketone H-bonding chains passing through the cell; the remaining four chains are related by centrosymmetry (about $1 / 2,1 / 2,1 / 2$) to the ones shown and are therefore counterdirectional to them. All carbon-bound H atoms are removed for clarity. Displacement ellipsoids are set at the 30% probability level. Hydrogen bonds are shown as dashed lines.

'(2RS,4aRS,8aRS)-6-Oxoperhydronaphthalene-2-acetic acid'

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$
$M_{r}=210.26$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=21.1804$ (4) \AA
$b=10.1644$ (2) \AA
$c=11.3208$ (3) \AA
$\beta=113.841$ (2) ${ }^{\circ}$
$V=2229.24(8) \AA^{3}$
$Z=8$
$F_{000}=912$
$D_{\mathrm{x}}=1.253 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 405 K
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 11741 reflections
$\theta=4.6-64.8^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Parallelepiped, colourless
$0.39 \times 0.25 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART CCD APEX II area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=100(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\min }=0.767, T_{\max }=0.841$
11737 measured reflections

1848 independent reflections
1516 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=64.8^{\circ}$
$\theta_{\text {min }}=4.6^{\circ}$
$h=-24 \rightarrow 24$
$k=-11 \rightarrow 11$
$l=-11 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0533 P)^{2}+1.3738 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2004)
Extinction coefficient: none

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Special details

Experimental. 'crystal mounted on cryoloop using Paratone-N'
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.12293(7)$	$0.55256(15)$	$0.08048(14)$	$0.0208(3)$
H1A	0.1606	0.6001	0.1498	0.025^{*}
H1B	0.1081	0.4792	0.1208	0.025^{*}

O1	$0.10016(6)$	$1.02711(11)$	$0.15128(12)$	$0.0359(3)$
C2	$0.15039(7)$	$0.49638(14)$	$-0.01477(14)$	$0.0213(3)$
H2A	0.1128	0.4436	-0.0809	0.026^{*}
O2	$0.23668(6)$	$0.24042(12)$	$0.21637(11)$	$0.0348(3)$
C3	$0.16989(8)$	$0.60852(15)$	$-0.08379(16)$	$0.0260(4)$
H3A	0.2084	0.6596	-0.0201	0.031^{*}
H3B	0.1858	0.5714	-0.1479	0.031^{*}
O3	$0.13891(6)$	$0.22685(11)$	$0.04077(11)$	$0.0324(3)$
H3	0.1322	0.1624	0.0807	0.049^{*}
C4	$0.10842(9)$	$0.69988(16)$	$-0.15210(15)$	$0.0285(4)$
H4A	0.1232	0.7730	-0.1928	0.034^{*}
H4B	0.0718	0.6503	-0.2216	0.034^{*}
C4A	$0.07856(8)$	$0.75706(15)$	$-0.06068(14)$	$0.0237(4)$
H4AA	0.0343	0.8022	-0.1145	0.028^{*}
C5	$0.12764(8)$	$0.86090(16)$	$0.02976(15)$	$0.0254(4)$
H5A	0.1742	0.8220	0.0735	0.030^{*}
H5B	0.1313	0.9363	-0.0226	0.030^{*}
C6	$0.10384(8)$	$0.90974(16)$	$0.12963(16)$	$0.0262(4)$
C7	$0.08506(9)$	$0.80542(16)$	$0.20388(16)$	$0.0282(4)$
H7A	0.0631	0.8470	0.2569	0.034^{*}
H7B	0.1275	0.7601	0.2629	0.034^{*}
C8	$0.03537(8)$	$0.70459(16)$	$0.11229(16)$	$0.0275(4)$
H8A	-0.0098	0.7474	0.0640	0.033^{*}
H8B	0.0281	0.6322	0.1639	0.033^{*}
C8A	$0.06196(7)$	$0.64682(15)$	$0.01577(14)$	$0.0222(3)$
H8AA	0.0234	0.5938	-0.0479	0.027^{*}
C9	$0.21235(8)$	$0.40612(16)$	$0.05273(16)$	$0.0262(4)$
H9A	0.2308	0.3787	-0.0111	0.031^{*}
H9B	0.2489	0.4574	0.1206	0.031^{*}
C10	$0.19796(7)$	$0.28470(15)$	$0.11360(15)$	$0.0229(3)$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0221(7)$	$0.0191(8)$	$0.0203(7)$	$-0.0016(6)$	$0.0075(6)$	$0.0014(6)$
O1	$0.0488(7)$	$0.0217(6)$	$0.0414(7)$	$-0.0043(5)$	$0.0228(6)$	$-0.0076(5)$
C2	$0.0211(7)$	$0.0202(8)$	$0.0215(8)$	$-0.0015(6)$	$0.0072(6)$	$-0.0014(6)$
O2	$0.0273(6)$	$0.0412(8)$	$0.0292(7)$	$0.0041(5)$	$0.0043(5)$	$0.0073(5)$
C3	$0.0324(8)$	$0.0242(8)$	$0.0264(9)$	$-0.0012(7)$	$0.0171(7)$	$-0.0012(6)$
O3	$0.0322(6)$	$0.0251(6)$	$0.0297(6)$	$-0.0043(5)$	$0.0020(5)$	$0.0036(5)$
C4	$0.0396(9)$	$0.0248(8)$	$0.0230(8)$	$0.0010(7)$	$0.0146(7)$	$0.0030(6)$
C4A	$0.0261(8)$	$0.0206(8)$	$0.0213(8)$	$0.0018(6)$	$0.0062(6)$	$0.0020(6)$
C5	$0.0293(8)$	$0.0212(8)$	$0.0280(8)$	$-0.0013(6)$	$0.0139(6)$	$0.0025(6)$
C6	$0.0246(8)$	$0.0245(9)$	$0.0265(8)$	$-0.0019(6)$	$0.0072(6)$	$-0.0033(6)$
C7	$0.0337(8)$	$0.0269(9)$	$0.0282(9)$	$-0.0008(7)$	$0.0168(7)$	$-0.0032(7)$
C8	$0.0260(8)$	$0.0249(9)$	$0.0342(9)$	$-0.0002(6)$	$0.0148(7)$	$0.0003(7)$
C8A	$0.0219(7)$	$0.0206(8)$	$0.0228(8)$	$-0.0010(6)$	$0.0076(6)$	$0.0001(6)$
C9	$0.0208(7)$	$0.0258(8)$	$0.0314(9)$	$0.0023(6)$	$0.0098(6)$	$0.0007(7)$

sup-4

supplementary materials
C 10
Geometric parameters $(A, 0209(7)$

C1-C2	1.528 (2)
C1-C8A	1.536 (2)
C1-H1A	0.9900
C1-H1B	0.9900
O1-C6	1.227 (2)
C2-C9	1.529 (2)
C2-C3	1.530 (2)
C2-H2A	1.0000
$\mathrm{O} 2-\mathrm{C} 10$	1.207 (2)
C3-C4	1.530 (2)
C3-H3A	0.9900
С3-H3B	0.9900
O3-C10	1.3252 (19)
O3-H3	0.8400
C4-C4A	1.529 (2)
C4-H4A	0.9900
C4-H4B	0.9900
C2-C1-C8A	112.53 (12)
C2-C1-H1A	109.1
C8A-C1-H1A	109.1
C2-C1-H1B	109.1
C8A-C1-H1B	109.1
H1A-C1-H1B	107.8
C1-C2-C9	111.49 (12)
C1-C2-C3	109.89 (12)
C9-C2-C3	110.36 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.3
C9-C2-H2A	108.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	111.11 (12)
C4-C3-H3A	109.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
C4-C3-H3B	109.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
H3A-C3-H3B	108.0
C10-O3-H3	109.5
C4A-C4-C3	112.88 (13)
C4A-C4-H4A	109.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
C4A-C4-H4B	109.0
C3-C4-H4B	109.0
H4A-C4-H4B	107.8
C4-C4A-C8A	110.76 (13)
C4-C4A-C5	110.91 (13)
C8A-C4A-C5	111.72 (12)

C4A-C8A	$1.541(2)$
C4A-C5	$1.544(2)$
C4A-H4AA	1.0000
C5-C6	$1.496(2)$
C5-H5A	0.9900
C5-H5B	0.9900
C6-C7	$1.503(2)$
C7-C8	$1.533(2)$
C7-H7A	0.9900
C7-H7B	0.9900
C8-C8A	$1.534(2)$
C8-H8A	0.9900
C8-H8B	0.9900
C8A-H8AA	1.0000
C9-C10	$1.504(2)$
C9-H9A	0.9900
C9-H9B	0.9900
C6-C5-H5B	109.1
C4A-C5-H5B	109.1
H5A-C5-H5B	107.8

O1-C6-C5 122.79 (15)
O1—C6-C7 121.45 (15)
C5-C6-C7 115.76 (14)

C6-C7-C8 110.96 (13)
C6-C7-H7A 109.4
C8-C7-H7A 109.4
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \quad 109.4$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \quad 109.4$
H7A-C7-H7B 108.0
C7-C8-C8A 112.85 (12)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A} \quad 109.0$
C8A-C8-H8A 109.0
C7-C8-H8B 109.0
C8A-C8-H8B 109.0
H8A-C8-H8B 107.8
$\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 1 \quad 112.28$ (12)
C8-C8A-C4A 110.76 (13)
$\mathrm{C} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A} \quad 112.51$ (12)
C8-C8A-H8AA 107.0
C1—C8A-H8AA 107.0
C4A-C8A—H8AA 107.0
C10-C9—C2 115.43 (12)
C10-C9—H9A 108.4
C2-C9—H9A 108.4
C10-C9-H9B 108.4

supplementary materials

C4-C4A-H4AA	107.8	C2-C9-H9B	108.4
C8A-C4A-H4AA	107.8	H9A-C9-H9B	107.5
C5-C4A-H4AA	107.8	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	122.47 (15)
C6-C5-C4A	112.69 (13)	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	124.27 (14)
C6-C5-H5A	109.1	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$	113.22 (13)
C4A-C5-H5A	109.1		
C8A-C1-C2-C9	178.32 (12)	C6-C7-C8-C8A	52.53 (18)
C8A-C1-C2-C3	55.63 (16)	C7-C8-C8A-C1	71.69 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-56.71 (16)	C7-C8-C8A-C4A	-55.02 (17)
C9-C2-C3-C4	179.93 (13)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	-179.09 (12)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	56.59 (17)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-53.33 (16)
C3-C4-C4A-C8A	-52.68 (17)	$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	177.19 (12)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5$	71.97 (17)	C5-C4A-C8A-C8	53.01 (16)
C4-C4A-C5-C6	-174.28 (13)	C4-C4A-C8A-C1	50.61 (16)
C8A-C4A-C5-C6	-50.18 (17)	C5-C4A-C8A-C1	-73.58 (16)
C4A-C5-C6-O1	-130.97 (16)	C1-C2-C9-C10	63.15 (17)
C4A-C5-C6-C7	49.60 (19)	C3-C2-C9-C10	-174.43 (13)
O1-C6-C7-C8	130.45 (16)	$\mathrm{C} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$	-140.42 (16)
C5-C6-C7-C8	-50.12 (18)	C2-C9-C10-O3	41.91 (19)

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	1.85	$2.6816(17)$	169
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.53	$3.4997(18)$	167
$\mathrm{C} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.51	$3.368(2)$	145
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.52	$3.4559(19)$	158

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $-x,-y+1,-z$.

Fig. 1

supplementary materials

Fig. 2

